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ABSTRACT
In this paper we present an occlusion culling method that uses
hardware-based depth queries on oriented bounding boxes to cull
unseen geometric primitives efficiently. An out-of-core design en-
ables this method to interactively display data sets that are too large
to fit into main memory. During a preprocessing phase, a spatial
subdivision (such as an octree or BSP tree) of a given data set is con-
structed where, for each node, an oriented bounding box containing
mesh primitives is computed using principal component analysis
(PCA). At runtime, the tree indicated by the spatial subdivision is
traversed in front-to-back order, and only nodes that are determined
to be visible, based on a hardware accelerated depth query, are ren-
dered.
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1 INTRODUCTION

Large data sets consisting of several million polygons from satel-
lite imagery and laser range scanners are becoming commonplace,
and more efficient means to visualize them are necessary. Multires-
olution and data simplification methods are often used to reduce
the number of primitives sent to the graphics hardware allowing
the display of large data sets at interactive rates. Another approach
is to reduce the graphics primitive count using occlusion culling
and to leverage the performance benefits of retained mode to render
the visible regions at full resolution. Occlusion culling reduces the
number of primitives sent to the graphics hardware by identifying
and ignoring parts of the mesh being visualized that are not visi-
ble from a current view point. This approach is very effective for
models with high depth complexity.

Our occlusion culling method uses the hardware depth query
available on modern graphics hardware and oriented bounding
boxes to cull unseen geometric primitives that are within the view-
ing frustum. An out-of-core design enables data sets that are too
large to fit into main memory to be displayed at interactive rates. In
a preprocessing phase, we build a hierarchical spatial subdivision
of a given dataset. Each node of the hierarchy is associated with a
tight-fitting oriented bounding box around the mesh primitives that
intersect the node. At runtime, the subdivision tree is traversed in
front-to-back order, and a hardware depth query is performed using
the oriented bounding box at each node to determine visibility for
the node’s geometry. Only nodes that are determined to be visible

are traversed and rendered.
Contributions The main contributions of our paper are the spatial
subdivision of a data set using tight-fitting oriented bounding boxes
to perform occlusion culling on large polygonal models. Addition-
ally, we present an out-of-core design which allows models that are
too large to fit into main memory to be viewed at interactive rates.
Lastly, we leverage the capabilities of modern graphics hardware
through the use of hardware-based occlusion queries (AGP) mem-
ory to perform fast occlusion tests using the bounding boxes and
asynchronous rendering on mesh primitives.

2 PREVIOUS WORK

Much research has been done in occlusion culling and visibility
computation. Many culling algorithms have been designed for spe-
cialized environments [1] including architectural models and urban
data sets composed of large occluders. Occluders are objects in
the data set known to cover or occlude parts of the data set (such
as walls in architectural visualization). These specialized occluder-
based approaches work well for the intended environments but per-
form less optimally in general settings. Hilleslandet al. [7] use
hardware-based depth query for occlusion culling. They precom-
pute a spatial subdivision of a mesh and render geometric primitives
in front-to-back order, using hardware depth queries to determine
visibility. For fast front-to-back traversal of a subdivision hierarchy,
they use a user-programmable vertex shader. For the power-plant
model, which has significant depth complexity, they obtain a speed-
up factor of four, on average, over view-frustum culling alone and
up to a speed-up factor of ten on constrained cases. Yoonet al. [10]
describe a system for view-dependent rendering from continuous
level-of-detail models with conservative occlusion culling. A ver-
tex hierarchy based on edge collapses is built for level-of-detail ren-
dering, and a cluster hierarchy based on vertex clustering is layered
on top of the vertex hierarchy for occlusion. For occlusion, frame-
to-frame coherence is exploited by reusing the visible set from the
previous frame to approximate the new visible set. Govindaraju et
al. [5] show how to generate sharp shadows for complex polygonal
environments using hardware occlusion queries.

El-Sana et al. [3] integrate occlusion culling with view-
dependent rendering. They combine geometric simplification and
occlusion culling to achieve a greater reduction in rendered trian-
gles. They do this by adding “visibility” as another parameter in se-
lection criteria of the appropriate LOD. Andújaret al.[2] also show
an approach that integrates occlusion culling with view-dependent



rendering using hardly visible sets (HVS). These are subsets of the
potentially visible cells that contribute only a small number pix-
els to the overall image. A framework using a user-specified error
bound selects a mesh from a fixed set of LOD representations based
on the HVS error estimates. Greeneet al. [6] describe a visibility
culling method that uses two hierarchical data structures, an object-
space octree and an image-space Z-pyramid, to rapidly cull hidden
geometry. They divide the mesh geometry into octree nodes, and
scan convert the faces of each node to determine visibility. Thus,
if the node is “hidden” none of its children are considered. A Z-
pyramid hierarchy is employed to reduce the cost of computing
node visibility. Zhanget al. [11] uses a hierarchical occlusion map
(HOM) for software visibility culling. For each frame, occluders
are selected from an occluder database and rendered, forming the
occlusion map hierarchy. Occluders are rendered as white poly-
gons on a black background and a depth estimation buffer is con-
structed to record depth values. The bounding volume hierarchy of
the model database is traversed to determine visibility culling.

Our algorithm is similar to the work described in [7] in that a
hardware depth query is used for occlusion culling. Our algorithm
differs from [7] by using hardware depth query on tight-fitting ori-
ented bounding boxes to cull more occluded geometric primitives.
In addition, our method’s out-of-core approach (integrated with fast
AGP memory) allows data sets that are too large to fit in main mem-
ory to be interactively displayed. Similar to Yoon et al. [10] we
split clusters using principle component analysis; however, we uti-
lize space partitioning structures (octree and BSP tree) to divide the
vertices into clusters. Additionaly, our preprocessing clustering al-
gorithm operates out-of-core, and our runtime viewing algorithm
allows models to be viewed at interactive rates in full resolution.

3 PREPROCESSING PHASE

The preprocessing phase begins by computing a spatial subdivision
of the model to be visualized. The model consists of vertices and
triangles defining the connectivity of the vertices. The mesh is re-
cursively partitioned into smaller volumes and an oriented bound-
ing box that closely fits the geometry contained within each vol-
ume is computed using Principal Component Analysis (PCA). A
detailed description of PCA is provided in [9]. Oriented bounding
boxes computed using PCA are also described by Gottschalk et al.
[4] for fast hierarchical collision detection.

The tree defined by the spatial subdivision and the geometry con-
tained inside each node are stored in separate files for use during
runtime. The first file, the subdivision file, stores the spatial subdi-
vision and the oriented bounding box corresponding to each node
in the tree. The second file, the data file, stores the mesh geometry,
grouped according to subdivision tree node, in the same order as
the nodes appear in the subdivision file.

The subdivision file consists of an array of tree nodes. Each node
contains the following:

• Child Identifier . The index of the first child node.

• Offset. The disk offset into the data file.

• U, V, W and Origin . Three orthogonal axes and origin repre-
senting the local frame of the oriented bounding box.

• Width, Height, and Depth. Scalar dimensions of the ori-
ented bounding box.

Only leaf nodes have associated geometry so the offset is only used
if the node is a leaf node. Similarly, the child index is only used if
the node has child nodes. The U, V, and W basis vectors and the
origin together represent the local frame that describes the oriented

bounding box for a node. Each non-leaf node always has the max-
imum number of children allowed. Thus, at runtime, this file can
be accessed quickly by using the appropriate offsets. The data file
contains the mesh geometry for each leaf node in the subdivision
tree. Each leaf node has its own local set of vertices and triangles
stored as an index face list. Using local sets of geometry allows the
indices of a triangle to be stored in two bytes(unsigned shorts) in-
stead of four bytes(unsigned ints). This reduces both the disk space
and main memory usage of the geometry. The following informa-
tion is stored for each leaf node in the subdivision tree:

• Number of vertices and triangles.

• List of vertices (triples of floating-point values) and triangles
(triples of indices into the list of vertices).

The subdivision tree is constructed according to a set of user-
specified parameters. These parameters are: available memory,
maximum tree depth, and maximum number of triangles per leaf
node. The maximum tree depth and the maximum number of trian-
gles serve as termination criteria for the tree construction process.
We have tested both octree and binary space partition (BSP) tree
implementations of the subdivision tree.

Each octree node is represented physically by an oriented bound-
ing box and is subdivided at a split point. Choosing a good split
point location is important since it determines how the triangles are
distributed among each of the eight children. Even distribution is
desired so that the resulting tree is balanced. The average of the
vertices contained within a node determines the split point used to
compute the child nodes.

A binary space partition is obtained by recursively bisecting
bounding boxes with a plane. Each BSP tree node stores its split
plane and has two children. Each child represents the space “in
front of” or “behind” the split plane. The split plane is chosen to be
the plane with the dominant vector of the three principal directions
as its normal.

4 RUNTIME PHASE

At runtime, the subdivision file is used to recreate the subdivision
tree, which is traversed hierarchically in front-to-back order based
upon the current view point. For each node visited, its oriented
bounding box is tested for visibility using a hardware depth query.
If the node is not visible, traversal is terminated and none of the leaf
nodes are rendered, thus, saving the time required to render these
elements.

For a given view point, beginning at the root node, we determine
in which octant (or half space) the view point lies. For a BSP tree,
the plane used is the split plane and front-to-back traversal is simply
a variant of an in-order binary tree traversal. For an octree, three
planes are tested to determine the traversal order of the children.

For large data sets that contain millions of triangles, it is not pos-
sible to load the entire triangle mesh into memory let alone render
all of the triangles in a reasonable amount of time. A memory man-
agement scheme is used to allocate the available memory for storing
node geometry in main memory. Our algorithm uses a combination
of fast Accelerated Graphics Port (AGP) memory and slower main
memory for storing and rendering node geometry. The AGP sup-
ports fast, asynchronous access to memory for transferring data to
the graphics card independent of the CPU. Rendering performance
is enhanced by allocating a chunk of AGP memory and dividing
this into smaller chunks to hold node geometry. Additional main
memory is allocated as needed for holding node geometry when the
AGP memory store has been exhausted. Two chunks of AGP mem-
ory, large enough for rendering geometry from any node, called
reservechunks are set aside for use when AGP memory is filled.



This allows us to exploit frame-to-frame coherence between con-
secutive viewpoints by keeping geometry from recently rendered
nodes cached in AGP or main memory.

At the start of each frame, the subdivision tree is traversed from
the root node in front-to-back order and the oriented bounding
boxes are used to determine the visible regions which are subse-
quently rendered. The front-to-back tree traversal and rendering of
visible geometry incrementally builds a depth buffer that is used for
subsequent occlusion queries. If there are no memory chunks avail-
able (either AGP or main), the reserve chunks are used for loading
and rendering the geometry but are not assigned to the node. Fur-
thermore, memory chunks, corresponding to nodes that have not
been visible for several frames, are reclaimed and added to the pool
of available chunks. This is implemented using a counter for each
memory chunk that is incremented every frame its corresponding
node is not visible. If this counter reaches some user-specified
threshold, the memory chunk is released from the node and marked
as available. The counter is set to zero if the node becomes visible.

An alternative method to this occlusion strategy is to render all
visible nodes from framei and the viewpoint for framei + 1 and
use this depth buffer as the starting point for the occlusion queries.
The advantage of this method is that it can reduce the number of
occlusion queries because the initial depth buffer is a much better
approximation of the final one. The disadvantage is that it requires
extra bookkeeping to track which nodes have been rendered and
which nodes from framei need occlusion tests since some invisible
nodes will be rendered as the object is rotated.

Vertex arrays are used for efficient rendering and reduced func-
tion call overhead. The implementation used for the results
in this paper uses the NVIDIA extensionglDrawRangeEle-
ments to place vertex arrays in AGP memory and theglSet-
FenceNV andglFinishFenceNV extensions for synchroniza-
tion between the GPU and the CPU. However, we note that fu-
ture implementations should be based upon the recently released
ARB_vertex_buffer_object extension.

4.1 Hardware Occlusion Query

The hardware occlusion query determines whether or not rendering
a set of primitives would affect the image on the screen. Modern
graphics hardware allows multiple occlusion queries to be sent at
once and permits other processing to continue while waiting for the
results. The occlusion query allows a user to determine whether
or not to render based on some defined threshold of modified frag-
ments. An adaptive rendering technique could also be developed
that selects a mesh from a hierarchy of meshes based on the amount
of occlusion. Our algorithm uses NVIDIA’s occlusion query exten-
sion and renders all of the contained primitives if one or more pix-
els are affected and ignores the geometry when no pixel is affected.
The occlusion query process has three steps:

1. Disable updates to the color and depth buffers.

2. Render the query geometry. In our algorithm, the query ge-
ometry is a node’s bounding box.

3. Obtain and process the query results. In our algorithm this
includes enabling writes to the color and depth buffers and
rendering the geometry if the node is visible.

The results of an occlusion query are not available until the query
geometry has finished rasterization. This can result in significant
performance degradation if the time between initiating the query
and reading the results is not filled with other useful calculations.
In our algorithm, we keep the occlusion query pipeline as utilized
as possible by submitting multiple occlusion queries in succession
before the results from the first queries are read. It should be noted

that it is possible to lose some amount of culling by submitting mul-
tiple queries at once if some of the queries are dependent on each
other. Submitting queries for geometry that overlaps other geome-
try within a set of queries can potentially lead to a false invisibility
test. (False invisibility tests can cause more than the necessary num-
ber of triangles to be rendered, but this does not generate cracks or
holes in the rendered image.)

5 RESULTS

Figure 3: Performance of occlusion culling using an octree con-
structed with conventional min-max bounding boxes and another
octree constructed with oriented bounding boxes. Graphs indicate
the number of triangles rendered per frame. Octrees were con-
structed on the Lucy data set having a maximum of 5000 triangles
per leaf node.

Both an octree and a BSP tree spatial partitions were
tested for several large meshes. All data sets were ob-
tained from the Stanford 3D Scanning Repository(http://www-
graphics.stanford.edu/data/3Dscanrep/). All tests were performed
on a Pentium 4 3.2 GHz system with 2 GB of main memory and
NVIDIA’s GeForce FX 5200. The Happy Buddha model contains
543K vertices and 1.088 triangles, and the Lucy model contains
14M vertices and 28M triangles. Rendering frame rates ranged
from 66 fps to 3 fps. For consistency, a viewing path having 70
to 300 frames was saved for each data set and used to reproduce
viewing positions for the different tree implementations and traver-
sal methods. Table 1 shows the average percentages of triangles
culled and average frame rates for each data set over the course of
this test. Preprocessing requires a few minutes for the Buddha and
30 minutes for the Lucy model (the largest mesh tested).

Figure 1 shows a rendering of the Lucy data set. The left image
shows the rendering from the user’s view point. At the right, the
model is rotated and zoomed to show the back side and the culled
regions of the mesh. Frustum culling is automatically included in
this method as indicated by the culling of the tip of the torch and
the bottom of the torso. Using the octree construction, about 5.66
million triangles (with 80% culling) were rendered in about 0.33
seconds. Figures 2 shows the same for the Buddha data set.

The main feature of this method is the ability to interactively dis-
play meshes that are too large to fit into memory. The raw geometry
of the Lucy data set requires over 500 MB of memory. This method
can interactively display this data set at up to 5 frames per sec-
ond using an artificial main memory limit of 270 MB. Another fea-
ture is the use of tight-fitting oriented bounding boxes for improved



(a) (b) (c)

Figure 1: Rendering of Lucy model using an octree for the spatial partitioning. Image (a) shows a lit, shaded rendering of the Lucy model.
Image (b) shows the nodes colored in gray scale based upon tree traversal (white being the closest to the viewer). Image (c) shows a side view
of the nodes used to render images (a) and (b).

(a) (b) (c)

Figure 2: Buddha model and rendered nodes using an octree for the spatial partitioning. Image (a) shows a lit, shaded rendering of the Buddha
model. Image (b) shows the nodes colored in gray scale based upon tree traversal (white being the closest to the viewer). Image (c) shows a
side view of the nodes used to render images (a) and (b).

culling. For the Lucy data set, two octrees were constructed and
compared: one using conventional min-max bounding boxes and
the other using oriented bounding boxes. Both were constructed us-
ing the same parameters and each were tested using the same view-
ing path. The octree having oriented bounding boxes, on average,
culled 6% additional triangles and up to 7.5% additional triangles
than the conventional octree, see Table 2. Figure 3 shows a graph
of the rendered triangle count obtained using both trees.

The traversal method was tested to see how pipeline stalls af-
fect rendering and culling results. Two variations on traversal were
implemented for comparison. Variation (a) –denoted in the graphs
with asterisk– performs one hardware depth query at a time, for
each node, as the tree is traversed. Variation (b) traverses the tree,
keeps track of the sequence of nodes and issues the depth queries
in groups of nodes. Figures 4 and 5 show the results for both tree
types. Variation (a) culls more triangles but variation (b) achieves
faster rendering time. This happens because variation (b) issues
multiple queries at once. (Culling rate can be affected by overlap-
ping oriented bounding boxes within a set of queries as previously
discussed in Section 4.) Variation (b) achieves faster rendering time
due to reduced pipeline stalls since less time is spent on queries.

When using the same parameters for tree construction, an octree
has more leaf nodes than a BSP tree due to the fact that an oc-
tree split produces four times as many children. Generally, the leaf
nodes (in an octree) store fewer triangles, which leads to smaller
bounding boxes, ideal for culling. This is indicated by the graphs
shown in Figures 4 and 5 since octrees have better culling results.
However, the efficiency of the memory management scheme is ad-
versely affected by the greater number of leaf nodes since this num-
ber is proportional to the number of memory chunks needed. Since
fixed-sized memory chunks (as determined by the largest leaf node)
are used and there are more nodes with fewer triangles, less mem-
ory is actually utilized. This causes more disk access and increases
the rendering time. This explains why the BSP tree culls less ge-
ometry than the octree but renders faster. A histogram showing the
number of nodes having a certain number of triangles, for both oc-
tree and BSP tree constructions for the Lucy data set, is shown in
Figure 6. The BSP tree has a better distribution since there is a high
concentration of leaf nodes containing a high number of triangles.
The octree distribution shows most of the leaf nodes containing a
few number of triangles. (The remaining data sets had similar re-
sults.)



Data set Octree BSP tree
Avg. % culled Avg. frame rate Avg. % culled Avg. frame rate

Happy Buddha 49.8% 62.5 41.0% 66.7
Lucy 63.9% 1.9 55.6% 2.3

Table 1: Average percentages of triangles culled and average frame rates for each data set.

Octree type Min number rendered Max number rendered Avg. rendered Avg. % culled
Oriented 3,585,050 13,896,857 9,471,981 67%
Standard 3,995,501 15,753,649 10,967,944 61%

Table 2: Comparison of two different octree constructions for Lucy data set: one with conventional and the other with oriented bounding
boxes. The octree with oriented bounding boxes culls, on average, 1.5 million (6%) additional triangles.

Figure 6: Triangle distribution for Lucy data set. The top image
shows the distribution for the octree and the bottom for the BSP
tree. This graphs plot the triangle distributions of the leaf nodes for
each tree.

6 CONCLUSIONS AND FUTURE WORK

We have presented a new occlusion culling algorithm for rendering
large polygonal models at their full resolution. A spatial subdivi-
sion of a given data set is computed and traversed in front-to-back
order to perform visibility culling. Our approach integrates tight-
fitting oriented bounding boxes (computed by PCA) with an out-
of-core rendering approach (using fast AGP memory) for a display
system that culls a large number of occluded triangles efficiently.
We have tested our system on several large models consisting of
several million triangles. The Buddha and Dragon data sets, each
containing approximately a million triangles, are rendered at 30-66
frames per second, and the Lucy data set, with 28 million triangles,
is rendered at 2-3 frames per second. In addition, with an out-of-

core design approach, our algorithm is able to interactively display
data sets that are too large to fit into main memory.

Our future work is focused on improving the performance and
scalability of both phases of our algorithm. The preprocessing
phase can take a long time for very large data sets. The current
implementation is file I/O intensive due to memory constraints. A
more efficient file I/O management scheme will help reduce re-
quired preprocessing time. Additionally we would like to inves-
tigate bottom-up tree building algorithms based on local clustering
and integrated our preprocessing with streaming mesh formats such
as those used in [8].

Although a large number of geometric primitives can be culled
using this method, in some circumstances, there may still be too
many visible regions that need to be rendered. A data simplification
method or multiresolution analysis is needed to further reduce the
primitive count to maintain interactivity. As hinted at Section 4, an
adaptive rendering technique could be developed to select a mesh
from a hierarchy of meshes depending on the number of pixels af-
fected or the distance from a view point.
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